Haliclorensin, a Novel Diamino Alkaloid from the Marine Sponge *Haliclona tulearensis*

Ganit Koren-Goldshlager,[†] Yoel Kashman,^{*,†} and Michael Schleyer[‡]

School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel, and Oceanographic Institute, Durban, Republic of South Africa

Received September 24, 1997

Haliclorensin (1), a novel diamino alkaloid possessing an azacyclodecane ring, has been isolated from the sponge *Haliclona tulearensis*. Its structure was elucidated on the basis of spectroscopic data, as well as by comparison with γ -amino azacycloalkanes.

A number of interesting biologically active compounds have been reported from the marine sponge genus *Haliclona*. The examples reported from this genus include the cytotoxic haliclonacyclamines;¹ the antifungal pentacyclic alkaloid, papuamine;² haliclonadiamine;³ the antimicrobial cytotoxic alkaloids, haliclamines;⁴ and the manzamines.^{5,6}

In our search for biologically active substances from marine organisms,⁷ an extract from the orange marine sponge *Haliclona tulearensis* exhibited strong cytotoxicity against P-388 mouse leukemia cells ($IC_{50} = 0.1 \text{ mg/mL}$). The sponge was collected by scuba at Sodwana Bay, Durban, South Africa, at a depth of 15 m; MeOH– EtOAc (1:1) extraction of the freeze-dried sponge yielded an extract that was partitioned between different solvents.⁸ The *n*-BuOH- and CHCl₃-soluble materials were separately subjected to RP-18 chromatography, eluting with a MeOH–H₂O gradient. Further purification of fractions containing **1** on a Sephadex LH-20 column, eluting with MeOH, afforded pure haliclorensin (**1**, 0.55% dry wt).

Haliclorensin (1), $[\alpha]_D = -2.2^\circ$, was obtained as a colorless oil. The ¹³C-NMR and DEPT experiments (Table 1) disclosed one methine, 11 methylenes, and one methyl. The ¹³C chemical shifts of C-2 (δ_c 48.5), C-10 (δ_c 42.4), C-1' (δ_c 41.3), and C-3' (δ_c 41.2) indicated that each one of these four carbons was proximate to a nitrogen atom. Evident from the proton NMR spectrum was a >NCH₂CH(CH₃) group (δ 2.67 dd, 2.88 m, H-2a,-2b; 1.91 m, H-3 and 0.92 d, CH₃-11). COSY and TOCSY analysis of the ¹H-NMR spectra (Table 1) revealed two spin systems: >N(CH₂)₃NH₂ and >NCH₂CH(CH₃)-(CH₂)₇N<. HMBC cross peaks (Table 1) confirmed

S0163-3864(97)00442-4 CCC: \$15.00

these assignments and suggested the connectivity between the two spin systems through the tertiary nitrogen as shown in the structure. The positive FABMS of **1** showed a pseudomolecular ion peak at m/z 213, and HREIMS established its molecular formula as $C_{13}H_{28}N_2$, in full agreement with structure **1**. Also, in full agreement were the carbon–carbon bond cleavages, α,β to the N-atoms, in the mass spectrum, yielding the ions at m/z 44 ($C_2H_6N^+$, 100%), 183 ($M^+ - CH_2=NH$, 19%), and 170 ($M^+ - C_2H_4N$, 13%).

Interesting to note is the strong dependence of the NMR spectra of **1** on the acidity of the measured sample and, therefore, also on the presence of other accompanying polar compounds. This behavior created difficulties during the purification process. Although protonation of a nitrogen atom, in acidic media, causes a pH-dependent downfield shift of the α -proton signals,⁹ the carbon resonances of **1** were shifted upfield at an unpredictable rate. The complexity of the situation is demonstrated by the comparisons of the δ_c values of **1** and several model compounds (**2**–**5**),¹⁰ summarized in Table 2.

The comparison of the δ_c values of compounds **1**–**4** with the resonances of **5** (the only mono amino compound) point clearly to the influence of the primary γ -amino group, an influence that might suggest a strong hydrogen bond between the two nitrogen atoms, in the neutral state, which affects the carbon resonances.

Keramaphidin C, 6Z-azacycloundecene, was the first reported marine azamacrocycle,¹¹ and it is suggested to be a precursor of manzamine C, which incorporates this ring in its structure.¹¹ The azamacrocycle in manzamine C is attached to a second nitrogen atom through a three-methylene unit, which is suggested to be derived from acrolein or its bio-precursor. A similar biogenetic route to the one suggested for manzamine C^{11} may also be suggested for haliclorensin (1), with the tryptophan being replaced by ammonia or its bio-precursor.

Noteworthy is the sodium channel-blocker activity as well as inhibition of leishmania parasites of a whole series of compounds incorporating the N-(γ -aminopropyl) azacycloalkane moiety in their structure.^{12,13} The primary amino group of **1** is expected to form a Schiff base readily and thus to result in analogous bioactive compounds. Work is ongoing in tracing the more polar compounds responsible for the cytotoxicity of the sponge extract.

42-4 CCC: \$15.00 © 1998 American Chemical Society and American Society of Pharmacognosy Published on Web 01/30/1998

^{*} To whom correspondence should be addressed. Phone: +972-3-6408419. Fax: +972-36409293. E-mail: kashman@post.tau.ac.il. † Tel Aviv University.

[‡] Oceanographic Institute, Durban.

Table 1. NMR Data of Haliclorensin (1) (500 MHz, in DMSO-*d*₆)

C#	$\delta_{ m c}$ (mult)	$\delta_{\rm H}$ (mult, J in Hz) COSY & TOCSY		HMBC (H→C)
2 48.5 (t)		2a: 2.67 (dd, $J = 12.8, 6.9$)	2b, 3, 11	3, 4, 11, 1'
		2b:2.88 (m)	2a, 3, 11	3, 4, 11, 1'
3	26.5 (d)	1.91 (m) 2a, 2b, 11		2, 4, 5, 11
4	30.3 (t)	4a: 1.11 (m) 4b		2, 3, 6, 11
		4b: 1.52 (m)	4a	2, 3, 6, 11
5	22.6 (t)	1.30 - 1.42		6, 7
6	24.3 (t)		8	
		6b: 1.42 (m)		8
7	24.1 (t)	7a: 1.24 (m)		8, 9
		7b: 1.42 (m)		8, 9
8	22.3 (t)	1.30–1.42 (m)		6, 7
9	21.5 (t)	9a: 1.50 (m) 9b, 10a, 10b		7, 10
		9b: 1.70 (m)	9a, 10a, 10b	7, 8, 10
10	42.4 (t)	42.4 (t) 10a: 2.84 (m)		8, 1'
		10b: 2.96 (m)	9a, 9b, 10a	9, 1'
11	17.7 (q)	0.92 (d, $J = 6.5$)	3, 5, 4a, 4b	2, 3, 4
1′	41.3 (t)	1'a: 2.94 (m)	1′b, 2′a, 2′b	2', 3', 2
		1′b: 3.09 (m)	1′a, 2′a, 2′b	2', 3', 2
2′	19.2 (t)	2'a: 1.94 (m)	2′b, 1′a, 1′b	1', 3'
		2'b: 2.12 (quin, $J = 7.0$)	2′a, 1′a, 1′b	1′, 3′
3′	41.2 (t)	3.03 (m)	2′a, 2′b, 1′a, 1′b	1', 2'

Table 2. ¹³C-NMR Data of Haliclorensin (1) and Model Compounds $2-5^{a,b}$

no.	1	2	3	4	5 ^c
1'	48.1	49.7	57.0	56.8	55.7
2'	22.1	24.1	24.3	30.2	19.5 ^e
3′	46.7	47.1	47.7	39.6	21.4^{e}
2	53.1	58.2	54.3	44.7	52.1
10	50.7				
1′	41.9 (6.2) ^d	49.7 (0)	54.0 (3.0)	55.1 (1.7)	56.1 (-0.4)
2'	20.6 (1.5)	22.9 (1.2)	22.3 (2.0)	22.9 (7.3)	19.8 ^e (-0.3)
3′	41.3 (5.4)	37.3 (9.8)	37.3 (10.4)	37.1 (2.5)	$21.6^{e}(-0.2)$
2	49.6 (3.5)	52.7 (5.5)	54.0 (0.3)	43.4 (1.3)	52.4 (-0.3)
10	44.1 (6.6)				

^{*a*} **2**: N-(3-Aminopropyl)azacyclotridecane; **3**: N-(3-aminopropyl)piperidine; **4**: 3-dimethyaminopropylamine; **5**: N-butylpiperidine. ^{*b*} Taken in D₂O with dioxane as an internal standard for calibration. ^{*c*} Measured in neutral and acidic DMSO- d_6 . ^{*d*} TFA added, values in parentheses are $\Delta \delta_c$ values between neutral and acidic measurements. ^{*e*} Exchangeable.

Experimental Section

General Experimental Procedures. Mass spectra (low resolution and high resolution) were recorded on a Fisons, Autospec Q instrument.¹H- and ¹³C-NMR spectra were recorded on Bruker AMX-360 and ARX-500 spectrometers. Optical rotation was measured on a Perkin–Elmer model 141 polarimeter using a 1-cm microcell.

Collection and Isolation Procedures. The sponge *Haliclona tulearensis* (class Demospongiae, order Haplosclerida, family Chalinidae, genus Haliclona) was collected in Sodwana Bay, South Africa, by scuba at a depth of 15 m during September 1995. The sponge was described as a fine, "muddy" orange laminate sponge with large oscula on its ridges. A voucher sample is deposited in the Zoological Department at Tel Aviv University (TASA 121).

After collection, the sponge was immediately frozen at -25 °C. The freeze-dried sponge (3.63 g) was then extracted with EtOAc–MeOH (1:1) to give a brown gum (0.38 g). The crude gum was divided among different solvents.⁸ The CHCl₃ fraction and the *n*-BuOH fraction (each separately) were chromatographed on RP-18 column several times, eluted with a MeOH–H₂O gradi-

ent, and then on a Sephadex LH-20 column, eluted with MeOH-CHCl₃ (1:1), to afford **1** (20 mg, 0.55% dry wt).

Haliclorensin (1): an oil; $R_f = 0.62$ (MeOH–CHCl₃; 3:2), visualized with I₂; $[\alpha]_D - 2.2^\circ$ (*c* 1.3, MeOH); NMR data in Table 1; EIMS *m*/*z* (%) [M]⁺ 212 (35), 183 (22), 170 (13), 168 (10), 154 (30), 112 (33), 99 (84), 85 (39), 70 (69), 56 (41), 44 (100); HREIMS *m*/*z* 212.2250 (calcd for C₁₃H₂₈N₂, 212.2252).

Synthesis of *N*-(3-Aminopropyl)azacyclotridecane (2). Azacyclotridecane (92 mg, 0.5 mmol) and an equimolar amount of acrylonitrile (33 μ L) were dissolved in dry MeOH (6 mL), and the mixture was stirred at room temperature for 4 h.¹³ The solvent was removed under reduced pressure, and the residue was chromatographed on Sephadex LH-20. The purified product [*N*-(3-propionitrile)azacyclotridecane] (75 mg, 0.31 mmol) was dissolved in MeOH (20 mL) (saturated with NH₃) and was hydrogenated over Raney Ni at room temperature at 3 atm, for 1 h. The catalyst was removed by filtration, and the residue was purified by Sephadex LH-20 column to give **2** (65 mg, 0.27 mmol, 85% yield).

Compound 2: an oil; $R_f = 0.59$ (MeOH–CHCl₃; 3:2), visualized with I₂; ¹H NMR (D₂O + dioxane + TFA; 100: 0.1:0.1; 360 MHz) (pH = 2.5) δ 3.22 (4H, m), 3.12 (4H, m), 1.78 (4H, m), 1.39–1.48 (18H, m); ¹³C NMR (D₂O + dioxane + TFA; 100:0.1:0.1; 90 MHz) (pH = 2.5) δ 52.7 (t, C-2/13), 49.7 (t, C-1'), 37.3 (t, C-3'), 26.0, 25.2, 25.0, 24.5, 21.6 (10 methylenes, C-3÷C-12), 22.9 (t, C-2'); FABMS; m/z (%) [MH]⁺ 241 (100), 196 (M⁺ – C₂H₆N, 10), 184 (14).

Synthesis of N-(3-Aminopropyl)piperidine (3). Synthesis of **3** was done following the same procedure as for **2**, starting from piperidine.

Compound 3: an oil, $R_f = 0.45$ (MeOH–CHCl₃; 3:2), visualized with I₂; 1H NMR (DMSO- d_6 , 500 MHz) δ 2.80 (2H, d, J = 11.6 Hz, H-2a/6a), 3.33 (2H, d, J = 11.6 Hz, H-2b/6b), 1.74 (2H, m, H-3a/5a), 1.78 (2H, m, H-3b/5b), 1.33 (1H, m, H-4a), 1.64 (1H, m, H-4b), 3.08 (2H, m, H-1'), 2.02 (2H, br q, J = 7.1 Hz, H-2'), 2.84 (2H, br t, H-3'); ¹³C NMR (DMSO- d_6 + traces of TFA, 90 MHz) δ 51.5 (t, C-2/6), 21.7 (t, C-3/5), 20.9 (t, C-4), 52.4 (t, C-1'),

20.9 (t, C-2'), 35.9 (t, C-3'); EIMS; m/z (%) [M]⁺ 142 (60), 100 (M⁺ - C₂H₄N, 15), 44 (C₂H₆N⁺, 100).

References and Notes

- (1) Charan, R. D.; Garson, M. J.; Brereton, I. M.; Willis, A. C.; Hopper, J. N. A. *Tetrahedron* **1996**, *52*, 9111–9120.
- (2) Baker, B. J.; Scheuer, P. J.; Shoolery, J. N. J. Am. Chem. Soc. 1988, 110, 965–966.
 (3) Faby, F.; Molinski, T. F.; Harner, M. K.; Sullivan, B. W.;
- Fahy, E.; Molinski, T. F.; Harper, M. K.; Sullivan, B. W.; Faulkner, D. J. *Tetrahedron* **1988**, *29*, 3427–3428.
 Fusetani, N.; Yasumuro, K.; Matsunaga, S. *Tetrahedron Lett.*
- 1989, 30, 6891–6894.
 (5) Sakai, R.; Kohmoto, S.; Higa, T. Tetrahedron Lett. 1987, 28, 5493–5496.
- (6) Sakai, R.; Higa, T.; Jefford, C. W.; Bernardinelli, G. *J. Am. Chem. Soc.* **1986**, *108* (8), 6404–6405.

- (8) Kupchan, S. M. J. Org. Chem. 1977, 42, 2349-2357.
- (9) Verpoorte, R. J. Nat. Prod. 1986, 49, 1-25.
- (10) Compounds 2 and 3 were synthesized as described in the Experimental Section.
- (11) Tsuda, M.; Kawasaki, N.; Kobayashi, J. *Tetrahedron Lett.* **1994**, *35*, 4387–4388.
- (12) Kumar, V. V.; Singh, S. K.; Sharma, S.; Bhaduri, A. P.; Gupta, S.; Zaidi, A.; Tiwari, S.; Katiyar, J. C. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 675–680.
- (13) Roufos, I.; Hays, S.; Schwarz, R. D. J. Med. Chem. 1996, 39, 1514–1520.

NP970442X